Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 775
Filtrar
1.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 385-393, 2024 Apr 15.
Artigo em Chinês | MEDLINE | ID: mdl-38660903

RESUMO

OBJECTIVES: To investigate the effect of chaperone-mediated autophagy (CMA) on the damage of mouse microglial BV2 cells induce by unconjugated bilirubin (UCB). METHODS: The BV2 cell experiments were divided into two parts. (1) For the CMA activation experiment: control group (treated with an equal volume of dimethyl sulfoxide), QX77 group (treated with 20 µmol/L QX77 for 24 hours), UCB group (treated with 40 µmol/L UCB for 24 hours), and UCB+QX77 group (treated with both 20 µmol/L QX77 and 40 µmol/L UCB for 24 hours). (2) For the cell transfection experiment: LAMP2A silencing control group (treated with an equal volume of dimethyl sulfoxide), LAMP2A silencing control+UCB group (treated with 40 µmol/L UCB for 24 hours), LAMP2A silencing group (treated with an equal volume of dimethyl sulfoxide), and LAMP2A silencing+UCB group (treated with 40 µmol/L UCB for 24 hours). The cell viability was assessed using the modified MTT method. The expression levels of p65, nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), and cysteinyl aspartate specific proteinase-1 (caspase-1) were detected by Western blot. The relative mRNA expression levels of the inflammatory cytokines interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF-α) were determined by real-time quantitative polymerase chain reaction. Levels of IL-6 and TNF-α in the cell culture supernatant were measured using ELISA. The co-localization of heat shock cognate protein 70 with p65 and NLRP3 was detected by immunofluorescence. RESULTS: Compared to the UCB group, the cell viability in the UCB+QX77 group increased, and the expression levels of inflammation-related proteins p65, NLRP3, and caspase-1, as well as the mRNA relative expression levels of IL-1ß, IL-6, and TNF-α and levels of IL-6 and TNF-α decreased (P<0.05). Compared to the control group, there was co-localization of heat shock cognate protein 70 with p65 and NLRP3 in both the UCB and UCB+QX77 groups. After silencing the LAMP2A gene, compared to the LAMP2A silencing control+UCB group, the LAMP2A silencing+UCB group showed increased expression levels of inflammation-related proteins p65, NLRP3, and caspase-1, as well as increased mRNA relative expression levels of IL-1ß, IL-6, and TNF-α and levels of IL-6 and TNF-α (P<0.05). CONCLUSIONS: CMA is inhibited in UCB-induced BV2 cell damage, and activating CMA may reduce p65 and NLRP3 protein levels, suppress inflammatory responses, and counteract bilirubin neurotoxicity.


Assuntos
Bilirrubina , Autofagia Mediada por Chaperonas , Microglia , Animais , Camundongos , Microglia/metabolismo , Autofagia Mediada por Chaperonas/fisiologia , Autofagia Mediada por Chaperonas/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Caspase 1/genética , Caspase 1/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Células Cultivadas , Sobrevivência Celular
2.
Cell Mol Life Sci ; 81(1): 130, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472355

RESUMO

ALKBH1 is a typical demethylase of nucleic acids, which is correlated with multiple types of biological processes and human diseases. Recent studies are focused on the demethylation of ALKBH1, but little is known about its non-demethylase function. Here, we demonstrate that ALKBH1 regulates the glycolysis process through HIF-1α signaling in a demethylase-independent manner. We observed that depletion of ALKBH1 inhibits glycolysis flux and extracellular acidification, which is attributable to reduced HIF-1α protein levels, and it can be rescued by reintroducing HIF-1α. Mechanistically, ALKBH1 knockdown enhances chaperone-mediated autophagy (CMA)-mediated HIF-1α degradation by facilitating the interaction between HIF-1α and LAMP2A. Furthermore, we identify that ALKBH1 competitively binds to the OST48, resulting in compromised structural integrity of oligosaccharyltransferase (OST) complex and subsequent defective N-glycosylation of LAMPs, particularly LAMP2A. Abnormal glycosylation of LAMP2A disrupts lysosomal homeostasis and hinders the efficient degradation of HIF-1α through CMA. Moreover, NGI-1, a small-molecule inhibitor that selectively targets the OST complex, could inhibit the glycosylation of LAMPs caused by ALKBH1 silencing, leading to impaired CMA activity and disruption of lysosomal homeostasis. In conclusion, we have revealed a non-demethylation role of ALKBH1 in regulating N-glycosylation of LAMPs by interacting with OST subunits and CMA-mediated degradation of HIF-1α.


Assuntos
Autofagia , Transdução de Sinais , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Glicosilação , Glicólise , Homólogo AlkB 1 da Histona H2a Dioxigenase/metabolismo
4.
Medicina (Kaunas) ; 60(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38256360

RESUMO

Background and Objectives: Danon disease is a multisystemic disorder associated with variants in the LAMP2 gene, mainly affecting the cardiac muscle. Here, we report a multigenerational family from Latvia with two male patients, hemizygous for a novel splice-affecting variant c.928+3A>G. Affected patients exhibit a cardiac phenotype, moderate mental disability, and mild retinal changes. Materials and Methods: Both patients underwent either exome or hypertrophic cardiomyopathy gene panel next-generation sequencing. The pathogenic variant effect was determined using reverse transcription, Sanger sequencing, and high-resolution electrophoresis. Results: Evaluation of the splicing process revealed that approximately 80% of the transcripts exhibited a lack of the entire exon 7. This alteration was predicted to cause a shift of the reading frame, consequently introducing a premature stop codon downstream in the sequence. Conclusions: Based on our data, we propose that c.928+3A>G is a pathogenic variant associated with Danon disease.


Assuntos
Doença de Depósito de Glicogênio Tipo IIb , Humanos , Masculino , Doença de Depósito de Glicogênio Tipo IIb/genética , Família Estendida , Letônia , Miocárdio , Genes Reguladores , Proteína 2 de Membrana Associada ao Lisossomo/genética
5.
Food Chem Toxicol ; 184: 114378, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38097005

RESUMO

Evidence suggests that ferroptosis participates in kidney injury. However, the role of ferroptosis in antimony (Sb) induced nephrotoxicity and the mechanism are unknown. Here, we demonstrated that Sb induced injury in renal tubular epithelial cells (RTECs) and ferroptosis. Inhibition of ferroptosis reduced RTECs injury. Besides, elimination of reactive oxygen species (ROS) alleviated ferroptosis and RTECs injury. Moreover, exposure to Sb not only increased the co-localization of glutathione peroxidase 4 (GPX4) and LAMP1, but also decreased the levels of MEF2D and LRRK2, while increased the levels of HSC70, HSP90, and LAMP2a. These findings suggest that Sb activates chaperone-mediated autophagy (CMA), enhances lysosomal transport and subsequent degradation of GPX4, ultimately leads to ferroptosis. Additionally, up-regulation of lysosomal cationic channel, TRPML1, mitigated RTECs injury and ferroptosis. Mechanistically, up-regulation of TRPML1 mitigated the changes in CMA-associated proteins induced by Sb, diminished the binding of HSC70, HSP90, and TRPML1 with LAMP2a. Furthermore, NAC restored the decreased TRPML1 level caused by Sb. In summary, deficiency of TRPML1, secondary to increased ROS induced by Sb, facilitates the CMA-dependent degradation of GPX4, thereby leading to ferroptosis and RTECs injury. These findings provide insights into the mechanism underlying Sb-induced nephrotoxicity and propose TRPML1 as a promising therapeutic target.


Assuntos
Autofagia Mediada por Chaperonas , Ferroptose , Espécies Reativas de Oxigênio/metabolismo , Antimônio/toxicidade , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteínas de Choque Térmico HSP90 , Autofagia
6.
J Am Coll Cardiol ; 82(16): 1628-1647, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37821174

RESUMO

Danon disease is a rare X-linked autophagic vacuolar cardioskeletal myopathy associated with severe heart failure that can be accompanied with extracardiac neurologic, skeletal, and ophthalmologic manifestations. It is caused by loss of function variants in the LAMP2 gene and is among the most severe and penetrant of the genetic cardiomyopathies. Most patients with Danon disease will experience symptomatic heart failure. Male individuals generally present earlier than women and die of either heart failure or arrhythmia or receive a heart transplant by the third decade of life. Herein, the authors review the differential diagnosis of Danon disease, diagnostic criteria, natural history, management recommendations, and recent advances in treatment of this increasingly recognized and extremely morbid cardiomyopathy.


Assuntos
Cardiomiopatias , Doença de Depósito de Glicogênio Tipo IIb , Insuficiência Cardíaca , Humanos , Masculino , Feminino , Doença de Depósito de Glicogênio Tipo IIb/complicações , Doença de Depósito de Glicogênio Tipo IIb/diagnóstico , Doença de Depósito de Glicogênio Tipo IIb/genética , Diagnóstico Diferencial , Consenso , Proteína 2 de Membrana Associada ao Lisossomo/genética , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Cardiomiopatias/terapia , Insuficiência Cardíaca/diagnóstico
7.
Exp Mol Med ; 55(9): 2025-2038, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37658156

RESUMO

Autophagy plays an important role in the development of diabetic cardiomyopathy. Cellular repressor of E1A-stimulated genes 1 (CREG1) is an important myocardial protective factor. The aim of this study was to investigate the effects and mechanisms of CREG1 in diabetic cardiomyopathy. Male C57BL/6 J mice, Creg1 transgenic mice and cardiac-specific knockout mice were used to establish a type 2 diabetes model. Small animal ultrasound, Masson's staining and western blotting were used to evaluate cardiac function, myocardial fibrosis and autophagy. Neonatal mouse cardiomyocytes (NMCMs) were stimulated with palmitate, and the effects of CREG1 on NMCMs autophagy were examined. CREG1 deficiency exacerbated cardiac dysfunction, cardiac hypertrophy and fibrosis in mice with diabetic cardiomyopathy, which was accompanied by exacerbated autophagy dysfunction. CREG1 overexpression improved cardiac function and ameliorated cardiac hypertrophy and fibrosis in diabetic cardiomyopathy by improving autophagy. CREG1 protein expression was decreased in palmitate-induced NMCMs. CREG1 knockdown exacerbated cardiomyocyte hypertrophy and inhibited autophagy. CREG1 overexpression inhibited cardiomyocyte hypertrophy and improved autophagy. LAMP2 overexpression reversed the effect of CREG1 knockdown on palmitate-induced inhibition of cardiomyocyte autophagy. CREG1 inhibited LAMP2 protein degradation by inhibiting the protein expression of F-box protein 27 (FBXO27). Our findings indicate new roles of CREG1 in the development of diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Proteínas F-Box , Proteína 2 de Membrana Associada ao Lisossomo , Proteínas Repressoras , Animais , Masculino , Camundongos , Autofagia , Cardiomegalia/genética , Cardiomegalia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Fibrose , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo
8.
Genes (Basel) ; 14(8)2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37628591

RESUMO

Danon disease is a rare x-linked dominant multisystemic disorder with a clinical triad of severe cardiomyopathy, skeletal myopathy, and intellectual disability. It is caused by defects in the lysosome-associated membrane protein-2 (LAMP2) gene. Numerous different mutations in the LAMP2 protein have been described. Danon disease is typically lethal by the mid-twenties in male patients due to cardiomyopathy and heart failure. Female patients usually present with milder and variable symptoms. This report describes a 42-year-old father and his 3-year-old daughter presenting with mild manifestations of the disease. The father has normal intellectual development and normal physical activity. At the age of 13, he was diagnosed with mild ventricular pre-excitation known as Wolf-Parkinson-White syndrome (WPWs), very mild and mostly asymptomatic cardiomyopathy and left ventricular hypertrophy, and at about the age of 25 presented with visual impairment due to cone-rod dystrophy. His daughter showed normal development and very mild asymptomatic electrocardiographic WPWs abnormalities with left mild ventricular hypertrophy. Genetic testing revealed an Xq24 microdeletion encompassing the entire LAMP2 gene. Relevant literature was reviewed as a reference for the etiology, diagnosis, treatment and case management.


Assuntos
Distrofias de Cones e Bastonetes , Doença de Depósito de Glicogênio Tipo IIb , Insuficiência Cardíaca , Feminino , Masculino , Humanos , Doença de Depósito de Glicogênio Tipo IIb/diagnóstico , Doença de Depósito de Glicogênio Tipo IIb/genética , Deleção de Genes , Genes Reguladores , Proteína 2 de Membrana Associada ao Lisossomo/genética
9.
Int J Cardiol ; 389: 131189, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454822

RESUMO

Successful therapy in a cohort with early onset Danon disease (DD) highlights the potential importance of earlier disease recognition. We present experience from the largest National Pediatric Center in Russia for cardiomyopathy patients. This report focuses on identification of early clinical features of DD in the pediatric population by detailed pedigree analysis and review of medical records. RESULTS: Nine patients (3 females) were identified with DD at the Russian National Medical Research Center of Children's Health ("National Pediatric Center") aged birth to 16 years. At presentation/evaluation: all patients had left ventricular hypertrophy (LVH), ECG features of Wolff-Parkinson-White (WPW), and an increase in hepatic enzymes (particularly lactate dehydrogenase (LDH)); three had marked increase in NT-proBNP; two had HCM with impaired LV function; one had LVH with LV noncompaction; five had arrhythmia with paroxysmal supraventricular and/or ventricular tachycardia. Two teenagers died at ages 16-17 from refractory heart failure and two underwent heart transplantation. All patients were found to have a pathogenic/likely pathogenic variant in the LAMP2 gene, six patients had no family history and a de novo evolvement was documented in 4/6 of those available for genetic tested. Retrospective review related to family background and earlier clinical evaluations revealed a definitive or highly suspicious family history of DD in 3, early clinical presentation with cardiac abnormalities (ECG, echo) in 3, and cerebral, hepatic and/or neuromuscular symptoms in 5. Abnormalities were detected 9,5 months to 5,8 years, median 3,5 years prior to referral to the National Pediatric Center. CONCLUSION: The earliest clinical manifestations of Danon disease occur in the first 12 years of life with symptoms of skeletal muscle and cerebral disease, raised hepatic enzymes, and evidence of cardiac disease on ECG/echo.


Assuntos
Cardiomiopatias , Doença de Depósito de Glicogênio Tipo IIb , Adolescente , Feminino , Humanos , Criança , Idoso , Doença de Depósito de Glicogênio Tipo IIb/diagnóstico , Doença de Depósito de Glicogênio Tipo IIb/genética , Proteína 2 de Membrana Associada ao Lisossomo/genética , Arritmias Cardíacas , Hipertrofia Ventricular Esquerda/patologia , Diagnóstico Precoce
10.
Autophagy ; 19(11): 2837-2852, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37469132

RESUMO

LAMP2 (lysosomal associated membrane protein 2) is one of the major protein components of the lysosomal membrane. There currently exist three LAMP2 isoforms, LAMP2A, LAMP2B and LAMP2C, and they vary in distribution and function. LAMP2A serves as a receptor and channel for transporting cytosolic proteins in a process called chaperone-mediated autophagy (CMA). LAMP2B is required for autophagosome-lysosome fusion in cardiomyocytes and is one of the components of exosome membranes. LAMP2C is primarily implicated in a novel type of autophagy in which nucleic acids are taken up into lysosomes for degradation. In this review, the current evidence for the function of each LAMP2 isoform in various pathophysiological processes and human diseases, as well as their possible mechanisms, are comprehensively summarized. We discuss the evolutionary patterns of the three isoforms in vertebrates and provide technical guidance on investigating these isoforms. We are also concerned with the newly arising questions in this particular research area that remain unanswered. Advances in the functions of the three LAMP2 isoforms will uncover new links between lysosomal dysfunction, autophagy and human diseases.Abbreviation: ACSL4: acyl-CoA synthetase long-chain family member 4; AD: Alzheimer disease; Ag: antigens; APP: amyloid beta precursor protein; ATG14: autophagy related 14; AVSF: autophagic vacuoles with unique sarcolemmal features; BBC3/PUMA: BCL2 binding component 3; CCD: C-terminal coiled coil domain; CMA: chaperone-mediated autophagy; CVDs: cardiovascular diseases; DDIT4/REDD1: DNA damage inducible transcript 4; ECs: endothelial cells; ER: endoplasmic reticulum; ESCs: embryonic stem cells; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GBA/ß-glucocerebrosidase: glucosylceramidase beta; GSCs: glioblastoma stem cells; HCC: hepatocellular carcinoma; HD: Huntington disease; HSCs: hematopoietic stem cells; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; IL3: interleukin 3; IR: ischemia-reperfusion; LAMP2: lysosomal associated membrane protein 2; LDs: lipid droplets; LRRK2: leucine rich repeat kinase 2; MA: macroautophagy; MHC: major histocompatibility complex; MST1: macrophage stimulating 1; NAFLD: nonalcoholic fatty liver disease; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; NLRP3: NLR family pyrin domain containing 3; PARK7: Parkinsonism associated deglycase; PD: Parkinson disease; PEA15/PED: proliferation and apoptosis adaptor protein 15; PKM/PKM2: pyruvate kinase M1/2; RA: rheumatoid arthritis; RARA: retinoic acid receptor alpha; RCAN1: regulator of calcineurin 1; RCC: renal cell carcinoma; RDA: RNautophagy and DNautophagy; RNAi: RNA interference; RND3: Rho Family GTPase 3; SG-NOS3/eNOS: deleterious glutathionylated NOS3; SLE: systemic lupus erythematosus; TAMs: tumor-associated macrophages; TME: tumor microenvironment; UCHL1: ubiquitin C-terminal hydrolase L1; VAMP8: vesicle associated membrane protein 8.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Autofagia/genética , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Carcinoma Hepatocelular/metabolismo , Células Endoteliais/metabolismo , Neoplasias Hepáticas/metabolismo , Lisossomos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Microambiente Tumoral , Proteínas Reguladoras de Apoptose/metabolismo
11.
ESC Heart Fail ; 10(4): 2479-2486, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37277924

RESUMO

AIMS: This study aimed to identify a novel splicing-altering LAMP2 variant associated with Danon disease. METHODS AND RESULTS: To identify the potential genetic mutation in a Chinese pedigree, whole-exome sequencing was conducted in the proband, and Sanger sequencing was performed on the proband's parents. To verify the impact of the splice-site variant, a minigene splicing assay was applied. The AlphaFold2 analysis was used to analyse the mutant protein structure. A splice-site variant (NM_013995.2:c.864+5G>A) located at intron 6 of the LAMP2 gene was identified as a potential pathogenic variant. The minigene splicing revealed that this variant causes exon 6 to be skipped, resulting in a truncated protein. The AlphaFold2 analysis showed that the mutation caused a protein twist direction change, leading to conformational abnormality. CONCLUSIONS: A novel splice-site variant (NM_013995.2:c.864+5G>A) located at intron 6 of the LAMP2 gene was identified. This discovery may enlarge the LAMP2 variant spectrum, promote accurate genetic counselling, and contribute to the diagnosis of Danon disease.


Assuntos
Doença de Depósito de Glicogênio Tipo IIb , Splicing de RNA , Humanos , População do Leste Asiático , Doença de Depósito de Glicogênio Tipo IIb/genética , Doença de Depósito de Glicogênio Tipo IIb/diagnóstico , Proteína 2 de Membrana Associada ao Lisossomo/genética , Mutação , Linhagem
12.
Toxicol Lett ; 383: 121-127, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390851

RESUMO

AIMS: Some studies have shown that the Benzo(a)pyrene (BaP) exposure induced oxidative damage, DNA damage and autophagy, but the molecular mechanism is not clear. Heat shock protein 90 (HSP90) is regarded as an important target in cancer therapy and a key factor in autophagy. Therefore, this study aims to clarify the new mechanism of BaP regulating CMA through HSP90. MAIN METHODS: C57BL mice were fed with BaP at a dose of 25.3 mg/kg. A549 cells were treated with different concerntrations of BaP, and MTT assay was used to observe the effect of BaP on the proliferation of A549 cells. DNA damage was detected by alkaline comet assay. Focus experiment for detection of γ-H2AX by immunofluorescence. The mRNA expression of HSP90, HSC70 and Lamp-2a was detected by qPCR. The protein expressions of HSP90, HSC70 and Lamp-2a were detected by Western blot. Next, we knocked down HSP90 expression by the HSP90 Inhibitor, NVP-AUY 922, exposed or HSP90α shRNA lentivirus transduction in A549 cells. KEY FINDINGS: In these studies, we first found that heat shock protein 90 (HSP90), heat shock cognate 70 (HSC70) and lysosomal-associated membrane protein type 2 receptor (Lamp-2a) expressions of C57BL mice lung tissue and A549 cells exposed to BaP were significant increase, as well as BaP induced DNA double-strand breaks (DSBs) and activated DNA damage responses, as evidenced by comet assay and γ-H2AX foci analysis in A549 cells. Our results demonstrated BaP induced CMA and caused DNA damage. Next, we knocked down HSP90 expression by the HSP90 Inhibitor, NVP-AUY 922, exposed or HSP90α shRNA lentivirus transduction in A549 cells. HSC70 and Lamp-2a expressions of these cells exposed to BaP were not significant increase, which showed that BaP inducted CMA was mediated by HSP90. Further, HSP90α shRNA prevented BaP induced of BaP which suggested BaP regulated CMA and caused DNA damage by HSP90. Our results elucidated a new mechanism of BaP regulated CMA through HSP90. SIGNIFICANCE: BaP regulated CMA through HSP90. HSP90 is involved in the regulation of gene instability induced by DNA damage by BaP, which promotes CMA. Our study also revealed that BaP regulates CMA through HSP90. This study fills the gap of the effect of BaP on autophagy and its mechanism, which will lead to a more comprehensive understanding of the action mechanism of BaP.


Assuntos
Autofagia Mediada por Chaperonas , Camundongos , Animais , Benzo(a)pireno/toxicidade , Camundongos Endogâmicos C57BL , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Autofagia , RNA Interferente Pequeno/farmacologia
14.
Aging (Albany NY) ; 15(11): 4685-4698, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37315291

RESUMO

Chaperone-mediated autophagy (CMA) selectively degrades proteins that are crucial for glycolysis, fatty acid metabolism, and the progression of several age-associated diseases. Several previous studies, each of which evaluated males of a single inbred mouse or rat strain, have reported that CMA declines with age in many tissues, attributed to an age-related loss of LAMP2A, the primary and indispensable component of the CMA translocation complex. This has led to a paradigm in the field of CMA research, stating that the age-associated decline in LAMP2A in turn decreases CMA, contributing to the pathogenesis of late-life disease. We assessed LAMP2A levels and CMA substrate uptake in both sexes of the genetically heterogeneous UM-HET3 mouse stock, which is the current global standard for the evaluation of anti-aging interventions. We found no evidence for age-related changes in LAMP2A levels, CMA substrate uptake, or whole liver levels of CMA degradation targets, despite identifying sex differences in CMA.


Assuntos
Autofagia Mediada por Chaperonas , Animais , Feminino , Masculino , Camundongos , Ratos , Envelhecimento/genética , Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia Mediada por Chaperonas/genética , Lisossomos/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo
15.
Mol Genet Genomic Med ; 11(9): e2216, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37288668

RESUMO

BACKGROUND: Danon disease is characterized by the failure of lysosomal biogenesis, maturation, and function due to a deficiency of lysosomal membrane structural protein (LAMP2). METHODS: The current report describes a female patient with a sudden syncope and hypertrophic cardiomyopathy phenotype. We identified the pathogenic mutations in patients by whole-exon sequencing, followed by a series of molecular biology and genetic approaches to identify and functional analysis of the mutations. RESULTS: Suggestive findings by cardiac magnetic resonance (CMR), electrocardiogram (ECG), and laboratory examination suggested Danon disease which was confirmed by genetic testing. The patient carried a novel de novo mutation, LAMP2 c.2T>C located at the initiation codon. The quantitative polymerase chain reaction (qPCR) and Western blot (WB) analysis of peripheral blood leukocytes from the patients revealed evidence of LAMP2 haploinsufficiency. Labeling of the new initiation codon predicted by the software with green fluorescent protein followed by fluorescence microscopy and Western blotting showed that the first ATG downstream from the original initiation codon became the new translational initiation codon. The three-dimensional structure of the mutated protein predicted by alphafold2 revealed that it consisted of only six amino acids and failed to form a functional polypeptide or protein. Overexpression of the mutated LAMP2 c.2T>C showed a loss of function of the protein, as assessed by the dual-fluorescence autophagy indicator system. The mutation was confirmed to be null, AR experiments and sequencing results confirmed that 28% of the mutant X chromosome remained active. CONCLUSION: We propose possible mechanisms of mutations associated with haploinsufficiency of LAMP2: (1) The inactivation X chromosome carrying the mutation was not significantly skewed. However, it decreased in the mRNA level and the expression ratio of the mutant transcripts; (2) The identified mutation is null, and the active mutant transcript fails to translate into the normal LAMP2 proteins. The presence of haploinsufficiency in LAMP2 and the X chromosome inactivation pattern were crucial factors contributing to the early onset of Danon disease in this female patient.


Assuntos
Cardiomiopatia Hipertrófica , Doença de Depósito de Glicogênio Tipo IIb , Humanos , Feminino , Doença de Depósito de Glicogênio Tipo IIb/patologia , Códon de Iniciação , Mutação de Sentido Incorreto , Cardiomiopatia Hipertrófica/genética , Mutação , Proteína 2 de Membrana Associada ao Lisossomo/genética
16.
Food Chem Toxicol ; 178: 113889, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37302536

RESUMO

Exposure to benzene results in peripheral blood cell reduction, aplastic anemia, and leukemia. We previously observed that the lncRNA OBFC2A was upregulated significantly in benzene-exposed workers and correlated with reduced blood cell counts. However, the role of lncRNA OBFC2A in benzene hematotoxicity remains unclear. In this study, we discovered that lncRNA OBFC2A was regulated by oxidative stress and played roles in cell autophagy and apoptosis caused by the benzene metabolite 1,4-Benzoquinone (1,4-BQ) in vitro. Mechanistically, protein chip, RNA pull-down, and FISH colocalization uncovered that lncRNA OBFC2A directly bound to LAMP2, a regulator of chaperone-mediated autophagy (CMA), and upregulated its expression in 1,4-BQ-treated cells. LncRNA OBFC2A knockdown alleviated LAMP2 overexpression caused by 1,4-BQ, which confirmed their regulatory relationship. In conclusion, we demonstrate that lncRNA OBFC2A mediates 1,4-BQ-induced apoptosis and autophagy by interacting with LAMP2. LncRNA OBFC2A could serve as a biomarker for hematotoxicity caused by benzene.


Assuntos
Leucemia , RNA Longo não Codificante , Humanos , Benzeno/toxicidade , Benzeno/metabolismo , RNA Longo não Codificante/genética , Apoptose/genética , Autofagia , Proteína 2 de Membrana Associada ao Lisossomo/genética
17.
Autophagy ; 19(9): 2575-2577, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37194363

RESUMO

LAMP2A is the rate-limiting factor of chaperone-mediated autophagy (CMA), a unique selective protein degradative pathway. To date LAMP2A antibodies are not knockout (KO)-validated in human cells. We have recently generated human isoform-specific LAMP2A KO cells, and here we assessed the specificity of select commercial LAMP2A antibodies on wild-type and LAMP2A KO human cancer cells. While all tested antibodies were suitable for immunoblotting, the anti-LAMP2A antibody (ab18528) is likely to exhibit an off-target reactivity in immunostaining approaches using human cancer cells, and alternative antibodies, which seem more appropriate, are available.


Assuntos
Autofagia Mediada por Chaperonas , Neoplasias , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Autofagia , Neoplasias/genética , Neoplasias/metabolismo , Anticorpos , Lisossomos/metabolismo
18.
Biochem Biophys Res Commun ; 662: 66-75, 2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37099812

RESUMO

Thyroid hormone (T3)-induced autophagy and its biological significance have been extensively investigated in recent years. However, limited studies to date have focused on the important role of lysosomes in autophagy. In this study, we explored the effects of T3 on lysosomal protein expression and trafficking in detail. Our findings showed that T3 activates rapid lysosomal turnover and expression of numerous lysosomal genes, including TFEB, LAMP2, ARSB, GBA, PSAP, ATP6V0B, ATP6V0D1, ATP6V1E1, CTSB, CTSH, CTSL, and CTSS, in a thyroid hormone receptor-dependent manner. In a murine model, LAMP2 protein was specifically induced in mice with hyperthyroidism. T3-promoted microtubule assembly was significantly disrupted by vinblastine, resulting in accumulation of the lipid droplet marker PLIN2. In the presence of the lysosomal autophagy inhibitors bafilomycin A1, chloroquine and ammonium chloride, we observed substantial accumulation of LAMP2 but not LAMP1 protein. T3 further enhanced the protein levels of ectopically expressed LAMP1 and LAMP2. Upon knockdown of LAMP2, cavities of lysosomes and lipid droplets accumulated in the presence of T3, although the changes in LAMP1 and PLIN2 expression were less pronounced. More specifically, the protective effect of T3 against ER stress-induced death was abolished by knockdown of LAMP2. Our collective results indicate that T3 not only promotes lysosomal gene expression but also LAMP protein stability and microtubule assembly, leading to enhancement of lysosomal activity in digesting any additional autophagosomal burden.


Assuntos
Lisossomos , Hormônios Tireóideos , Animais , Camundongos , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , /metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/metabolismo , Hormônios Tireóideos/metabolismo , Autofagia/fisiologia
19.
PLoS One ; 18(3): e0281577, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36913368

RESUMO

Evidence shows that chaperone-mediated autophagy (CMA) is involved in cancer cell pathogenesis and progression. However, the potential role of CMA in breast cancer angiogenesis remains unknown. We first manipulated CMA activity by knockdown and overexpressing of lysosome-associated membrane protein type 2A (LAMP2A) in MDA-MB-231, MDA-MB-436, T47D and MCF7 cells. We found that the tube formation, migration and proliferation abilities of human umbilical vein endothelial cells (HUVECs) were inhibited after cocultured with tumor-conditioned medium from breast cancer cells of LAMP2A knockdown. While the above changes were promoted after cocultured with tumor-conditioned medium from breast cancer cells of LAMP2A overexpression. Moreover, we found that CMA could promote VEGFA expression in breast cancer cells and in xenograft model through upregulating lactate production. Finally, we found that lactate regulation in breast cancer cells is hexokinase 2 (HK2) dependent, and knockdown of HK2 can significantly reduce the ability of CMA-mediated tube formation capacity of HUVECs. Collectively, these results indicate that CMA could promote breast cancer angiogenesis via regulation of HK2-dependent aerobic glycolysis, which may serve as an attractive target for breast cancer therapies.


Assuntos
Neoplasias da Mama , Autofagia Mediada por Chaperonas , Humanos , Feminino , Neoplasias da Mama/patologia , Autofagia , Meios de Cultivo Condicionados , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Glicólise , Linhagem Celular Tumoral
20.
Dis Markers ; 2023: 8295113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36741911

RESUMO

Background: It remains unclear about the mechanisms of prostate cancer progressing to castration resistant prostate cancer (CRPC) and the correlation with ferroptosis. Methods: We compared the gene profiles between localized prostate cancer and metastatic CRPC using the GEO dataset and intersected with a cluster of known ferroptosis-related genes. We received differentially expressed genes (DEGs) in CRPC related to ferroptosis and performed survival analysis to analyze the prognostic values. Furthermore, we conducted single sample gene set enrichment analysis (ssGSEA) to analyze immune infiltration and investigate microRNA crosstalk and methylation for prognostic genes using online databases. Results: We identified 84 DEGs in CRPC related to ferroptosis and 19 hub genes densely connected into networks by enrichment analysis. We performed survival analysis and Cox regression for these genes and identified LAMP2 with significantly prognostic values in overall survival (OS) and disease-specific survival (DSS) of prostate cancer. Furthermore, we found immune infiltration of various immune cells significantly correlated with LAMP2 expression in prostate cancer and identified multiple microRNAs associated with LAMP2 expression in prostate cancer. In addition, we found that the methylation level of LAMP2 in prostate cancer was significantly associated with cancer and identified 8 methylation sites for LAMP2. Conclusion: Ferroptosis-related gene LAMP2 is a potential biomarker with prognostic value for prostate cancer.


Assuntos
Ferroptose , MicroRNAs , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Prognóstico , Neoplasias de Próstata Resistentes à Castração/genética , Ferroptose/genética , Biomarcadores , MicroRNAs/genética , Proteína 2 de Membrana Associada ao Lisossomo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...